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Abstract

Individual energy release rates for delamination in composite laminates do not exist according to two- or three-
dimensional elastic theory due to the oscillatory characteristics of the stress and displacement fields near the delam-
ination tip (Sun, C.T., Jih, C.J., 1987. Engng. Fracture Mech. 28, 13-20; Raju, L.S., Creus Jr., J.H., Aminpour, M.A.,
1988. Engng. Fracture Mech. 30, 383-396.) In this paper, sublaminates governed by transverse shear deformable
laminate theory are adopted to model such delamination. Oscillatory singular stresses around the delamination tip are
avoided as a result. Instead, stress resultant jumps are found in the sublaminates across the delamination tip. It
transpires that mode I, II and III energy release rates can then be obtained using the virtual crack closure technique.
The results produced by this approach for a homogeneous double cantilever beam and an edge-delamination in a non-
homogeneous laminate show good agreement with those available in the literature. The approach produces both total
and individual components of energy release rate for delamination, which converge as the sublaminate division is re-
fined and the sizes of the delamination tip elements decrease. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

One of the most frequently encountered forms of damage in composite laminates is delamination, es-
sentially interface cracks between the plies. Theoretical studies of the propagation of existing delaminations
have to date been carried out mainly by adopting fracture mechanics to deal with the singularity at a
delamination leading edge or tip. The propagation of an existing delamination is governed by the mag-
nitudes of stress intensity factors or energy release rates. However, unlike cracks in homogeneous bodies,
linear elastic fracture mechanics based upon a two- or three-dimensional theory has encountered consid-
erable difficulties when dealing with these interfacial cracks which have not yet been overcome satisfac-
torily. The mismatch of material properties across the interface always results in coupled fracture modes.
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The stress fields around the crack tip show an oscillatory singularity (Williams, 1959), as do the relative
displacements between the surfaces of the crack (England, 1965). This leads to physically inadmissible
interpenetration of crack surfaces near crack tips.

Several types of stress intensity factors have been introduced to characterise crack tip stress fields (Rice
and Sih, 1965; Wang, 1983; Rice, 1988; Suo, 1990; Wu, 1990). However defined, for interfacial cracks in
dissimilar media, these stress intensity factors do not carry the classical physical interpretations which
identify three independent singular fields, referred to as the three modes of singularity, as in a homogeneous
body. This leaves a gap which needs to be bridged before the theory can be applied to practical problems.

It has also been found that individual components of energy release rate for an interface crack expressed
in terms of classical crack closure integrals or the virtual crack closure technique (VCCT) for solid finite
element analysis are not well defined because they do not converge. Rather, they show oscillatory behaviour
as do the stresses and displacements (Sun and Jih, 1987; Raju et al., 1988). Although the total energy release
rate does converge to a definite value, using it as a criterion for delamination growth is limited when a
mixed mode is involved (Hutchinson and Suo, 1992).

Some researchers (Hwu and Hu, 1992; Toya et al., 1997) modified the definition of energy release rates
by using a finite crack extension, larger than the size of the oscillation region, instead of the infinitesimal
one in the conventional definition. However, choosing the magnitude of the finite crack extension lacks
sound theoretical or experimental grounds. Raju et al. (1988) modelled resin-rich layers of about 0.01 mm
thickness between neighbouring plies as physical entities. A crack was assumed to exist centrally within this
resin layer. As a result, the oscillation vanished. The numerical results showed that the individual com-
ponents as well as the total energy release rates remain unchanged when the sizes of the crack tip elements
decrease. Unfortunately, the resin-rich layer is too thin to be modelled in practical problems.

For delaminations in composite laminates, it is preferable to use laminate theory rather than three-
dimensional elasticity theory. It is computationally expensive to use solid finite elements because a large
number of elements through the laminate thickness are required, especially in the case of multiple del-
amination problems. Attempts to obtain individual fracture modes from laminate theory can be found in a
number of publications. Williams (1988) suggested that mode I delamination be represented by a pair of
moments and transverse shear forces acting in opposite directions applied to the opposite sides of the
delamination. Mode II is obtained when the curvatures in the two parts of a delaminated laminate are the
same. The underlying justification for this approach is associated with the relative displacements between
the surfaces of the delamination around its tip. The opening displacement produces mode I while mode 11
corresponds to an in-plane sliding displacement. However, a pair of moments acting in opposite directions
applied to a split beam with two arms of different thickness, for example, results in non-zero relative sliding
displacement. This means that it is a mixed mode rather than a pure mode I problem (Suo and Hutchinson,
1990). With the help of a two-dimensional asymptotic numerical solution for a semi-infinite interface crack
between two elastic layers given by Suo and Hutchinson (1990), Toya et al. (1997) calculated the energy
release rates for mode I and mode II by a straightforward application of the crack closure method with
finite crack extension. Strictly speaking, this approach is valid only for laminates consisting of only two
different layers. This is far too restrictive to be applied to practical laminates. Sheinman and Kardomateas
(1997) used the elastic property smearing technique to convert the problem of a delaminating beam into an
equivalent homogeneous problem with orthotropic behaviour through the beam thickness and separated
the individual modes. In such smearing techniques, the effects of ply stacking sequence are ignored com-
pletely. This may cause errors depending on the nature of the beam. When laminate theory is used and the
laminate is considered to be comprised of two sublaminates in the delaminated region and a single intact
laminate in the undelaminated region (the model adopted widely in the literature), the moments contrib-
uting to both mode I and mode II will inevitably be involved in the expression for total energy release rate.
Individual components cannot be separated directly. Various assumptions have to be made to reach this
goal which require justification.
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Unlike the above laminate models, in this paper, the laminate is divided into sublaminates in both
delaminated and undelaminated regions with transverse shear-deformable laminate theory being adopted
for each of the sublaminates. The use of laminate theory eliminates the stress singularity and the oscillatory
behaviour involved in two- or three-dimensional linear elastic fracture mechanics theory for this problem.
Instead, stress resultants may show discontinuities across the delamination tip which reflects the interfacial
stress singularity there. Since there are no interfacial moments between the sublaminates (as will be dis-
cussed later), individual components of energy release rate can be obtained using the VCCT. They are all
well defined according to their classical definitions and converge to definite values as the magnitude of the
virtual delamination extension reduces. This approach will be applied to standard delamination problems
concerning a homogeneous double cantilever beam and a non-homogenous edge delaminated composite
laminate. The results show good agreement with those in the literature. As will be shown, usually more than
two sublaminates through the laminate thickness are required even for single delaminations in order to
reflect the three-dimensional nature of the problem with reasonable accuracy.

2. Sublaminate theory

The laminates considered in this paper comprise unidirectional plies with arbitrary lay-up angles and are
assumed to be delaminated prior to loading by a number of through-width delaminations located arbi-
trarily as shown in Fig. 1(a). Based on the configuration of the delaminated laminate, it is natural to
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Fig. 1. Configuration of the delaminated laminate: (a) plies and delaminations, (b) sublaminates and delamination and (c) local co-
ordinate of sublaminate.
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consider the delaminated laminate as an assembly of sublaminates each of which may consist of several
plies or parts of plies through the laminate thickness so that the delaminations exist at the interfaces of the
sublaminates, as shown in Fig. 1(b).

In the present work, the laminate is assumed to be subjected to loads which are constant in the width, i.e.
y direction. The problem considered is essentially two-dimensional. The width of the laminate is large
relative to the dimension of the zone affected by the crack tip. Thus, the problem can be presented as a
generalised plane strain problem in which all the strain components of the laminate are independent of the
coordinate y. For each sublaminate, its mid-surface is taken to be the reference surface, as shown in Fig.
I(c). According to the first order transverse shear deformable laminate theory (Reissner, 1945), the dis-
placements in the ith sublaminate can be expressed as

i(x,y,2;) = u;(x) + zoy(x) — 81}/2/27
v ) = vi(x) — zif;(x) + ey + e1xy + Koy (zi + hi), (1)
wl'(x7yazi) = W,-(X) - Koyz/za

where u;, v; and w; are the displacements at its mid-plane and o; and f;, the rotations of the normals of
sublaminate about the y and x axes. z; is the local coordinate for the sublaminate in the thickness direction.
h; is the global z-coordinate of the mid-plane of the ith sublaminate. ¢, ¢, and k, are given constants for the
whole laminate which are associated with the generalised strains in a generalised plane strain problem in the
x—z plane as shown in Fig. 1.

The generalised strains in the ith sublaminate are

0
€,; = &+ &1x + Kohi, Ky = Ko,
(2)
/ /

ngi =0y Ky = _ﬁﬂ
Vyzi = WZ + O, yyzi = _ﬁh
where the prime denotes the derivative with respect to x.
The interfacial displacement continuity conditions between any two neighbouring sublaminates, e.g. the
ith and (i 4+ 1)th sublaminates, in the undelaminated region are
wi + 103 /2 = iy — tig /2,
v — tB;/2 = vip1 + ti1 B /2, (3)

Wi = Witl,

where f; and ¢, are the thicknesses of the ith and (i + 1)th sublaminates, respectively.

3. The virtual crack closure technique

A solid finite element mesh around a crack tip is shown in Fig. 2. The physical interpretation of VCCT is
that the energy released during the virtual crack extension by a length of Aa is equal to the work required to
close the crack to its original length while the external loading remains unchanged. In a finite element
representation, the energy released is half of the work done by the forces at nodes ¢ and d required to pull
them together; therefore, (Rybicki and Kanninen, 1977)
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Fig. 2. Solid finite element mesh around the crack tip.

G = ﬁzcd(wc - Wa),

Gn = ﬁ)(cd(uc — Ua), (4)
Gu = ;EYM(UC — 0a),
and  G= G+ Gy + G, )

where Gy, Gy and Gy are the energy release rate for modes I to III and G is the total energy release rate. X,
Y. and Z_; are the magnitudes of nodal force pairs at nodes ¢ and d in the x, y and z directions, respectively,
which are required to pull nodes ¢ and d together. u,., v., w. and u,, v4, w; are nodal displacements before
nodes ¢ and d are pulled together. Two separate analyses of two consecutive configurations are required to
obtain the nodal forces and relative displacements.

When the above formulations are applied to delaminations in composite laminates, the individual energy
release rates do not converge, but show oscillatory behaviour as Aa decreases (Sun and Jih, 1987; Raju
et al., 1988) with physically inadmissible interpenetration of crack surfaces near crack tips. Solid finite
elements also meet other difficulties in modelling composite laminates, especially delaminated laminates. If
one ply is modelled by one or more layers of elements, the number of elements for the whole laminate could
be enormous, especially for a thick laminate, in order to keep a reasonable element aspect ratio. When
multiple delaminations are involved, this can easily make the problem computationally very expensive. If
one includes several plies of different fibre orientations in one layer of eclements, a stiffness smearing
technique is normally used and the effects of stacking sequence cannot then be taken into account properly.

A laminate finite element mesh around a delamination tip is sketched in Fig. 3. To be consistent with the
solid finite element method, the nodes are first placed at the delamination plane, i.e. lower and upper
surfaces of the upper and lower sublaminates, respectively, as shown in Fig. 3(a).

In laminate theory, each node represents the whole cross-section of the sublaminate; therefore, there are
three displacements and two rotations of the cross-section at each node which are conjugate to three nodal
forces and two nodal moments in the laminate finite elements. During the closing of a crack, the nodal
moments, as well as the nodal forces, do work. From the physical interpretation of VCCT, the total energy
release rate is
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Fig. 3. Sublaminate finite element mesh around the delamination tip.

1
G = m {Xc’d’(uc' — ”d’) —|— Yc’d’(v(*’ — Ud/) —|— Zc’d’(wc/ — Wdr) +M2)"d’ (O(C/ — O(dr — OCB, + 0(3,)
+ M2y (B — Ba — B2+ )} (6)

where Uy, Vo, Wy, ey B and ug, va, war, 0z, By are the generalised displacement components at nodes ¢’ and
d. o, [32,, o), and Bg, are the rotations after the nodes ¢’ and ¢’ are closed. Xow, Your, Zog and M2, ,, M5, are
the magnitudes of nodal forces and moments required to pull nodes ¢’ and @’ together.

It is clear that the three terms involving nodal forces contribute to the three modes, respectively.
However, the last two terms involving nodal moments in Eq. (6) may contribute to all the modes unless the
nodal moments are zero. In the laminate models adopted widely (Williams, 1988; Sheinman and Kard-
omateas, 1997; Toya et al., 1997), the undelaminated region is modelled as a single laminate. In this case,
non-zero nodal moments are, in general, required to close nodes ¢’ and d’. For example, consider a ho-
mogeneous double cantilever beam in Fig. 4. Only a nodal moment M?,, of magnitude M is needed since the
undelaminated region is modelled as a single laminate in which there will be no deformation under the given
loading condition. The other nodal forces Xy, Yoo, Zoy and moment M}, are all zero. According to
Williams (1988) intention, this is a pure mode I problem. However, two-dimensional analysis (Suo and
Hutchinson, 1990) showed that this is a mixed-mode problem if the thicknesses of the two arms are different
and the ratio of mode II to mode I varies when the depth of the delamination changes. It is impossible to
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Fig. 4. Double cantilever beam under end moments.
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separate the total energy release rate into individual components, in general, based on such a laminate
model.

However, if the undelaminated region is also divided into sublaminates with independent rotations,
governed by shear deformable laminate theory, individual energy release rates can then be obtained by
VCCT since the nodal moments in Eq. (6) are always zero as will be discussed in the next two sections. With
the dimension in the thickness direction eliminated in a laminate theory, there is no mechanism to ac-
commodate stress singularity around the delamination tip and consequently, the oscillatory behaviour is
not present. Instead, there exist stress resultant discontinuities across the delamination tip reflecting the
effects of the singularity.

4. Interfacial forces

Of particular interest are the regions around the delamination tip in Fig. 1; therefore, for simplicity at
this stage, only the part of the laminate behind and ahead of one delamination front is considered and two
sublaminates are adopted, as shown in Fig. 5. It is assumed that the external forces only act on the two ends
of the sublaminate. With a variation of generalised displacements in the sublaminates, the corresponding
variation of the total potential energy of the laminate under generalised plane strain conditions can be
expressed as follows

1 2
SIT = / 3 (Nx,-&gi + Nyid) + Mgty + Mok + 07,y + Oid /}m) dx + ZSW
P i=1
2

= _Z / [N,ﬁ,ﬁui + N80 + O\ dw; + (M}, — Oy) 80 — ( i Qy,)Sﬁ,}

(=]

~
()

— [ D[V + Nyvi+ Qi+ (M — 0a)83 — (M, — 0) 6] dx

i=1

+
MNQ

(VB + Nydu, + 0w, + My 8% — M6, )

xyi

i

MN

xyi

(N+5u + N vl + O w4+ M Se M):;.Sﬁf) + i(sW; + SW,-), ()
i=1

i

where Ny, Nyi, Ou, Oy and M,;, M, are the stress resultants and moments, 817, and 8, the variations of
the potential energy of the internal and external forces at the two ends of the sublaminate, respectively,
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Fig. 5. Two sublaminated model and interfacial forces and moments.
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which result in the natural boundary conditions. Superscript — or + indicates that the variable is evaluated
at the delamination tip x = @~ (in the delaminated region) or x = a* (in the undelaminated region), re-
spectively.

For each sublaminate, the generalised displacements are continuous across the delamination tip, i.e.,

[u; v, wy 00, B ] = [uf of whof BT (i=1,2). (8)

In the undelaminated region [a < x < /], the generalised displacements of the two sublaminates are
dependent on each other, as expressed in Eq. (3). Using these relations, the three translational displace-
ments at the mid-surface of the upper sublaminate can be expressed in terms of the rest of the generalised
displacements as follows:

uy = uy + (hoy + hoa)/2,
vy =v — (1B +1py)/2, ®)

Wy = Wi.

Substituting Eqs. (8) and (9) into Eq. (7), these three generalised displacements can be eliminated and one
obtains

2

8 ==Y /Oa [N;[(S“i + N80 + Q8w + (M, — Qui)dot — ( i Qy,)Sﬁ}

i=1
!
_/ {(N/ +N,)duy + (Nul "’N/‘z) Su1 + (Q + Qo) w1 + (M} — Qur + Npyt1/2) 8

- ( xyl Q}l + ;}*21‘1/2) 6/3] + (M;Z - Qx2 +N;2t2/2)6062 - ( xy2 Q)2 + ):thZ/Z) 6ﬁ2i| dx

(N N = N = NSt + (N + Ny = Ny, =

N )oul + [My = M+ (N = V) /2] 80

- |:MX}1

M$1 (N;ﬂ x}2)t1/2:| 5[3+ [M;2 - sz + (N;z - sz)tZ/z](S“;

2
- |:Mxy2 M:,;Z (ijﬂ x;2)t2/21| 6B2 (Qvl + Qx2 vl SWT + Z (SVTII + SVVI) . (10)
i=1

According to the principle of minimum potential energy, the equilibrium conditions result in the gen-
eralised force continuity conditions at the delamination tip,

N5+ N, = N+ N5,

Ny + Ny, = N;;l +N§27

On+0,= +Qrz7

M, —tN,/2 =M} —tN} /2, (11)
M —h x}l/z m —h x)1/2

M;2+12N7/2 :M;E'FZLQNZ/Z
M\;Z +h \fy2/2 xy2 + t2N+2/2

and the equilibrium equations of the laminate in the undelaminated region,
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N;l + N)iz =0,

N;yl + ;yZ = 07
Q;1 + Qiz =0,
M)i-l —QOu — thxll/2 =0, (12)

M)iyl - le - tl]\'])iyl/2 = 0’
M}, — Qv + 6N, /2 =0,
M;yz —Op + tzN;yz/Z =0.

To obtain the individual modes of delamination, it is necessary to analyse the actions and reactions
between the sublaminates, i.e. the interfacial forces at the delamination extension plane in the undelami-
nated region. At the junction, i.e., delamination tip, there may be, in general, concentrated interfacial forces
F.,F,,F, and moments T, 7,. Consider the lower sublaminate as a free body, as shown in Fig. 5. The
equilibrium of an infinitesimal segment containing the delamination tip gives these concentrated forces and
moments as

F;f :N;l _N;q’
Fy :Nx_yl _N):—vlv
F=0,-0, (13)

T, = (My — N, /2) — (M} —uN}/2),

To= = (Mg, = 0N /2) + (M, = 6N, /2).

The distributed interfacial forces and moments acting on its top surface in the undelaminated region are
fo fy, f- and m,,m, and can be obtained in a similar manner:

f;t = 7N;15
f:V = _N)éyh
fo==04, (14)

my, = — (M}, — Qu — tiN},/2),
my = M,\iyl - le - th)Zyl/z'

Comparing Eqgs. (13) and (14) with Egs. (11) and (12), it is concluded that

I,=0, 7,=0, m=0, m,=0. (15)

This same conclusion can also be obtained by considering the upper sublaminate as a free body. The first
three equations in Eq. (14) show that the interfacial tractions can be expressed in terms of the derivatives of
the stress resultants. The traction continuity conditions can be readily seen from the first three equations of
Eq. (12) as a natural consequence of minimization of total potential energy.

The interfacial forces result from the constraints of displacement continuity, i.e. Eq. (3), between
neighbouring sublaminates as reactions to the constraints. The relative rotations between sublaminates are
free from any constraints and the zero interfacial moment conditions as given in Eq. (15) reflect this
precisely. As a natural inference, the same conditions as expressed in Eq. (15) can be deduced for any inter-
sublaminate interfaces when the laminate is modelled with more than two sublaminates. The concentrated
and distributed interfacial forces for the delamination between ith and (i + 1)th sublamintes are
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1

Ef = Z(N;/ - xj)’ fX = _ZN;/')
J= Jj=

1

F, = Zl(Nx;y' - Ngy)v fr= _ZIN;yj’ (16)
j= j=

r=Y(0,-0)) £=-Y0,
j=1 J=1

The absence of interfacial moments is a crucial step leading to the separation of individual modes. Egs.
(13)—(15) mean that the interfacial actions and reactions ahead of the delamination tip are the only three
types of forces acting on the interface, the same as in the classical elasticity theory. These interfacial forces
correspond to the three modes of fracture, respectively, according to fracture mechanics and the individual
modes can be calculated by VCCT clearly in the context of laminate theory.

In previous laminate models (Williams, 1988; Sheinman and Kardomateas, 1997; Toya et al., 1997), the
undelaminated region is modelled as a single laminate, which means that the rotations of all the subla-
minates in the present model are the same. In this case, the continuity of moments across the delamination
tip and moment equilibrium equations in the undelaminated region are

M;l +M;2 —0n — QO — (sz]tl - N;zl‘z)/z =0,
My, + My = Ot = O = (Njuti = Njpt) /2 =0,
M, + M, — (4N — 6bN,) /2 = M + M5 — (4N — bN3) /2,

Mx;l +Mx;2 - (t]]vx;l — LN, )/2 = ijl "’M,:;z - (th:;l - t2N:ryz> /2~

xy2

From such a model, the interfacial moments, expressed in Egs. (13) and (14), have to be present at the
delamination tip and in the undelaminated region to maintain equilibrium and the total energy release rate
cannot be separated into individual components in general.

5. Individual energy release rates

The nodal forces and moments required to close the nodes ¢’ and d' are actually the effects of the in-
terfacial concentrated and distributed forces and moments. Since there are no interfacial moments in the
present laminate model, nodal moments must be zero. There are only three types of nodal forces, the same
as in the solid finite element method. From Egs. (4) and (6), the individual energy release rates are

1
:—Z,r/ S 4
G 2 Aa Ld(WL Wd)y
1
Gu = mXc’d’(uc’ - Hd')7 (18)
G = ! You( )
m = 2Aa cdd'\Uet — Ugr ).

When the size Aa of the delamination tip elements tends to zero, nodal forces X, Y. and Z., at the
delamination tip will be equal to the finite and determinate values of the stress resultant jumps F,, F, and F.
across the delamination tip as indicated in Eq. (16). Therefore, the energy release rate and its individual
components tend to their limits as the size Aa of the delamination tip elements are made small enough.
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In a laminate finite element representation, reference surfaces of the sublaminates and consequently, the
nodes are usually placed at the mid-surfaces of the sublaminates as shown in Fig. 3(b), the interfacial forces
or nodal forces are transferred to the mid-surface using the conditions of static equivalence. Therefore, the
values of these forces remain the same and the nodal displacements at the delamination surfaces can be
expressed in terms of the nodal displacements at the mid-surface of the sublaminate and rotations of the
cross-sections. From Egs. (3) and (18), the individual energy release rates for the delamination between the
ith and (i + 1)th sublaminates can be expressed as follows:

1

GI = mZef(Wg — Wd),
1
Gn = EXef(uc — Uy — tip1%/2 — ti04/2), (19)
1
G = Aq Yor(ve — va + tia B /2 + 1:8,/2),

where X/, Y, and Z,, are the magnitudes of interacting nodal forces between nodes e and f which are
approximations to the forces required to pull nodes ¢’ and d together when Aa is very small (Rybicki and
Kanninen, 1977) and the same element size ahead of and behind node e—f is maintained. In this way, the
energy release rates are evaluated only from the results of a single analysis for one configuration.

The interfacial displacement continuity conditions, Eq. (3), can be included in a finite element model in
different ways. In the present analysis, the commercial finite element package ABAQUS (HKS, 1996) was
chosen as the solver. The option EQUATION was used to impose the continuity conditions. As for nodes e
and f at the delamination tip, the displacement continuity conditions can be rewritten as

Ue — Uy — b0 /2 — tioty /2 — 1y = 0,
$ve = vp + tis1B./2 4 1B /2 — vo = 0, (20)

We —wp —wy =0,

where 1y, vy, and wy are displacement components of an extra node introduced artificially so that the nodal
forces X.r, Y.; and Z,, between node e and f can be obtained as the reactions at this node when it is fixed.

Having employed a laminate theory for the sublaminates, a smearing process can be used to evaluate the
stiffnesses. This differs from the homogenisation process in the solid finite element approach as sublami-
nates here still preserve at least a first order level of heterogeneity represented by the constituent terms in
their stiffness matrices [A], [B] and [D].

6. Effects of number of sublaminates on energy release rates

Individual fracture modes are classified with respect to the local symmetry conditions about the crack
surface around the crack tip in fracture mechanics (Anderson, 1995). When a delaminated laminate is
symmetric about the delamination plane, the two-sublaminates model can give reasonable results irre-
spective of the number of sublaminates introduced in the parts of the laminate on both side of the del-
amination, because the loading can always be separated into a symmetric part and an antisymmetric part
and laminate theory produces symmetric and antisymmetric (in-plane and anti-plane) results which pro-
duce mode I, mode II and mode III, respectively. In general, such symmetry does not always exist in a
delaminated laminate and the local deformation around the delamination tip may not be represented ac-
curately by a laminate theory with a single sublaminate on each side of the delamination. More subla-
minates must be used to allow a reasonable distribution of the in-plane displacements over the laminate
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thickness reflecting the two- or three-dimensional characteristics. The individual energy release rates are
found to converge to their true values as the number of sublaminates increases.

Consider a double cantilever beam (DCB) as shown in Fig. 4. When it is considered as a semi-infinite
split beam, a two-dimensional analytical solution has been given by Suo and Hutchinson (1990). This is
reasonable when thicknesses # and 7 are much smaller than lengths ¢ and 5. The material is homogeneous
and isotropic and, therefore, it is a conventional elastic fracture mechanics problem without oscillatory
behaviour.

The total energy release rate can be expressed as (Suo and Hutchinson, 1990)

6M* (1 1
6= (s+7): 2l

where E is Young’s modulus of the material. The classical mode I and 1T stress intensity factors, Kj and Ky
are obtained from an asymptotic numerical analysis in their paper.

In order to compare the present approach with the two-dimensional analytical results of Suo and
Hutchinson (1990), the following relationship between stress intensity factors and energy release rates is
used (Rybicki and Kanninen, 1977)

KII/KI = v/ GH/GI~ (22)

Consider first the DCB to comprise two sublaminates, above and below the delamination. The numerical
results are given in Table 1. Although the total energy release rate agrees well with Eq. (21), the individual
components drift away as the ratio of the two thicknesses decreases from unity.

However, if the two sublaminates are further divided uniformly into m and n sublaminates, respectively,
the results improve rapidly as m and n increase and approach the two-dimensional solution, as shown in
Table 2. A range of thickness ratios has been analysed and the results are shown in Table 3. It can be seen
that even when the delamination is near one of the beam’s surfaces, /7 = 0.2, the number of sublaminates
required to achieve a reasonable approximation is acceptable.

Table 1

Results for different thickness ratios of a DCB (m =n =1, Aa/t = 0.125)
t/T 1.0 0.8 0.6 0.4 0.2
Ku/K; (present) 0.0 0.192 0.433 0.742 1.15
Kn/K; (2D) 0.0 0.153 0.333 0.530 0.705
GG, 1.008 1.008 0.992 0.995 0.992

Table 2

Convergence with increasing sublaminate (¢/7 = 0.5, Aa/t = 0.125)
m-n 1-1 1-2 2-4 4-8 2D
Kun/K; 0.560 0.526 0.435 0.433 0.431

Table 3

Converged results for different thickness ratios of a DCB (Aa/t = 0.125)
T 1.0 0.8 0.6 0.4 0.2
m-n 1-1 2-3 2-4 2-5 2-8
Kn/K; (present) 0.0 0.154 0.325 0.537 0.730

Ku/K; (2D) 0.0 0.153 0.333 0.530 0.705
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7. Avoidance of oscillatory behaviour of energy release rates

Raju et al. (1988) investigated the convergence of energy release rate components for edge delamination
at the —35°/90° interface of an eight-ply [0°/+35°/90°], composite laminate subjected to uniform axial
tensile strain, as shown in Fig. 6, using quasi-three-dimensional (Q3D) finite element analysis in con-
junction with VCCT. Two models were adopted. One was a ‘bare’ interface laminate, i.e. a conventional
laminate without resin-rich layers. The energy release rate components exhibit oscillatory behaviour. In the
second model, a ‘resin’ interface layer was introduced, within which the delamination is embedded. The
‘resin’ layer has a thickness of 0.01 mm between the —35°/90° plies. With the delamination located in a
homogeneous isotropic material, the oscillatory components in the expressions for the energy release rates
vanish.

The ‘bare’ interface laminate is re-analysed using the present approach. Due to the symmetry, only one
quarter of the laminate is analysed. This is divided into a number of sublaminates as indicated in Table 4.

z A

20t .

0°

35° 3t

|

350
B

90°

— “A

b,
J

60t ‘ x

Fig. 6. Edge delamination in [0°/ & 35°/90°] laminate (fibre orientation is with respect to y axis).
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Table 4
Number of sublaminates and their thicknesses in plies of [0°/£35°/90°]; laminate
Sublaminates 0° 35° —35° 90°
4 t t t t
6 t t 12 2 12 12
8 t t 12 /4 t/4 t/4 14 12
12 12 12 12 12 12 t4 18 18 18 /8 14 12
(@) (b)
0.042 04
—0— Q3D resin interface [Raju] — — — 6 sublaminates [present] E —— Q3D resin interface [Raju] — — — 6 sublaminates [present]
NL:f —>— Q3D bare interface [Raju] — - — - 8 sublaminates [present] & —>X— Q3D bare interface [Raju] — - — - 8 sublaminates [present]
§ ------ 4 sublaminates [present] 12 sublaminates [present] | | ccceec 4 sublaminates [present] 12 sublaminates [present]
© 03
0.041
X X7 T T T T 0.2
0.04 : = 0.1 = =
1 0.1 0.01 0.001 0.1 0.01 0.001
Aalt Aalt
(©) (d)
1 0.02
» —0— Q3D resin interface [Raju] — — — 6 sublaminates [present] S} —0— Q3D resin interface [Raju] — — — 6 sublaminates [present]
;: —X—Q3D bare interface [Raju] — - — - 8 sublaminates [present] 5001 —X— Q3D bare interface [Raju] — - — - 8 sublaminates [present]
. . o
""" 4 sublaminates [present] 12 sublaminates [present] - - - - - -4 sublaminates [present] 12 sublaminates [present]
09 o o a
0
-0.01
0.8
-0.02
0.7 . + -0.03 L =
1 0.1 0.01 0.001 0.1 0.01 0.001
Aalt Aalt

Fig. 7. Total energy release rate and percentage of individual modes of edge delamination under uniaxial tension (£, is the longitudinal

Young’s modulus).

The size Aa of the delamination tip element is made smaller and smaller in order to show the convergence of
the energy release rates in the same way as did Raju et al. (1988). The present numerical results together
with those of Raju et al. are shown in Fig. 7.

The Q3D results for the ‘bare’ interface model given by Raju et al. (1988) show that the total energy
release rate remains unchanged as the size of the delamination tip element decreases over the range given in
Fig. 7. In fact, all the models agree on this, and the differences are negligible, given the scale of the vertical
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axis of the graph. However, the non-convergence behaviour for the individual modes from Q3D with the
‘bare’ interface is clear, although the oscillation is not yet apparent. To exhibit this, one requires a very
small Aa which is usually too small for a practical finite element mesh. Analytical expressions for the os-
cillatory terms can be found in Sun and Jih (1987) and Raju et al. (1988). The individual energy release rates
converge for all given values of Aa/z when the resin interface model is used. Compared with the results for
the ‘resin’ interface model, Raju et al. (1988) found that the range of Aa from 0.5 to 0.25 of the ply thickness
t gives similar results to those of the ‘bare’ interface model. However, without an extensive parametric
study, this may not be so in other cases.

The results for the present sublaminate model show that the total energy release rate and its individual
components converge as the size of the delamination tip element decreases, showing the same trend as that
of the Q3D ‘resin’ interface model. Furthermore, the converged values agree well with the ‘resin’ interface
model. Even when a coarse mesh of, say, four sublaminates (one ply, one sublaminate) is used, the ap-
proximation obtained is acceptable for most engineering applications.

Fig. 8 shows the distributions of the stress resultants and moments in the part of the laminate above the
delamination. As expected, the tension, in-plane shear and transverse shear forces are continuous on both

0.12
N=3tE
0.09 N:/N @
0.06
0.03
Ny/N
0
O./N
-0.03
0.06 . . . . .
0 10 20 30 40 50 60
(a) x/t
0.12
0.09 +
M=1.5tN
M, IM

0.06
0.03

oFf
-0.03

My, /M
0.06 : : ! . .
0 10 20 30 40 50 60
(b) x/t

Fig. 8. Distribution of stress resultants and moments above the edge delamination plane (moments are calculated with respect to the
delamination plane).
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sides of the delamination tip, but discontinuities, i.e. concentrated interfacial forces F;, F, and F;, are found
at the delamination tip, the moments calculated with respect to the delamination plane are continuous
along the whole region and no jumps occur across the delamination tip.

Obviously, F, is much smaller than F, and F. and, as a result, Gy; is much smaller than G; and Gy, see
Fig. 7. However, although F, and F; are of similar magnitudes, the mode I energy release rate may be rather
different from that of mode II, because energy release rates are also associated with the relative opening and
sliding displacements which depend on the bending, shear and tension stiffnesses of the sublaminates. There
may be large differences between these relative displacements.

Due to the existence of delamination, the stress resultants change dramatically across the delamination
tip. The coupling effects between tension and shear make the relative sliding and tearing (modes II and III)
displacement of the delamination depend upon both interlaminar shear stress components ahead of the
delamination tip. This means that the nodal force and the corresponding displacement of the minor of the
coupled modes II and III can be in opposite directions. As a result, the energy release rate of the corre-
sponding mode becomes negative, as with Gy in the present case. A similar phenomenon can be found in a
biaxial stress state. The minor stress components may do negative work on the corresponding strain as a
result of Poisson’s ratio effects. In the resin interface layer model used by Raju et al. (1988), mode II and
mode 11 components of the energy release rate are both positive because there does not exist such tension-
shear coupling in the isotropic resin layer.

8. Conclusions

By modelling the laminate as an assembly of sublaminates, the evaluation of the total energy release rate
and its individual components for delaminations in composite laminates have been achieved using the
virtual crack closure technique. The stress resultant jumps across the delamination tip in the laminate
theory help to avoid the singularity along with the oscillatory behaviour around the delamination tip en-
countered in conventional fracture mechanics. The individual as well as the total energy release rates,
therefore, converge to definite values as the mesh around the delamination tip is refined in the present
approach. The use of sublaminates helps to reduce the size of the problem in the thickness direction to an
extent.

The numerical results for DCB and edge delamination in a composite laminate show good agreement
with those obtained from other methods in the literature. Compared with the solid finite element method
with a resin interface, the present approach requires far fewer elements (sublaminates) through the laminate
thickness. The accuracy can be controlled by adjusting the number of sublaminates in the laminate. Even
with a small number of sublaminates, reasonable approximations can be obtained. It is, therefore, an ef-
fective approach for analysing delaminated laminates and for obtaining energy release rates so that the
propagation of a delamination can be predicted using an appropriate criterion.

When a delaminated laminate under a generalised plane strain state, as analysed in the present paper, is
considered as a segment perpendicular to the front of a delamination of a general shape in a laminate, the
approach can be extended to deal with delaminations of arbitrary shape. Moreover, this approach is simple
and can be implemented in most commercial finite element codes in a straightforward manner.
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